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airplane, and symmetry can be assumed for the other half. If, 
however, the free stream is not parallel to the plane of symmetry 
and/or if an instrument pod is added under one wing, then 
symmetry is spoiled. In vortex lattice computations, the symmetry 
of the airplane can still be used to advantage, not only in 
computation of the coefficients of the linear algebraic system, 
but more so in its solution. Computation time for a completely 
symmetric system is reduced, in comparison to that for an 
asymmetric system of the same size, by a factor of eight for 
one plane of symmetry. If there are two or three planes of 
symmetry, the factors are 64 and 512, respectively. If the 
isystem is only partially symmetric, the corresponding factors 
may still be as high as 4, 16, and 64. 
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1.0 INTRODUCTION 

The potentml flow computer program (PFP) described in Ref. i has been used 

frequently for :lerodynanuc analyses in support o f  testing at the Arnold EnNneering 

Development Center (AEDC). In one particular application, the investigation of  the gun 

gas ingestion for the A-10, the airplane was symmetric but the gun was off  center. The 

colnpletely symmetric model reqtured four hours of  IBM 370/165 computer time to run 

on the PFP. To obtain a solution with the gun off  center would have required about 

thirty hours per run. Tins rush project motivated a quick analysis o f  symmetry properties 

which resulted m a procedure whereby the off-center runs could be made in seven hours. 

About ten such runs were made. After the project was completed, a general method was 

developed as a spin-off under a computational fluid dynmmcs project. 

Symmetry is commonly used to cut computation tune; however, it is usually an 

all-or-nothing proposition. This need not be the case for vortex lattice computations. If 

the model has a nonsymmetnc portion and/or if the boundary conditions are not 

symmetric, the symmetry of  the system can still be used to advantage, not only m 

computation of  the coefficients of the linear algebraic system, but also in its solution. 

Computation time for a completely symmetric system is reduced, compared to that for 

an asymmetric system of the same size, by a factor of eight for one plane of symmetry. 

If there are two or three planes of symmetry,  the factors are 64 and 512, respectwely. If 

the system is only partially symmetric, the corresponding factors may still be as hlgtl as 

4. 16. and 64. 

Section 2.0 presents the method for taking advantage of partial symmetry.  Beginning 

with the pertinent reformation on the vortex lattice method, It shows how the algebraic 

system representing a symmetric geometry satisfies certain symmetry conditions. If the 

geometl:y l> only partmlly symmetric, the algebrmc system can be partitioned so that one 

portion satishes the symmetry conditions. The symmetry conditions can be used to 

produce a qmcker solutmn of  the symmetric portion of the system. Section 3.0 

summarizes and does an operation count which verifies the ~alue of the method. 

In the present domain of  application, the number of planes of  symmetry, X, is 

meaningful only for X = I. 2. or 3. Mathenlatlcally, however, the method generalizes to X 

being an arbitrar), posltt~,e integer. The validity of  the method and existence theorems on 

the mverse~ mvolved can then be proved by mathematical reduction ThL~ mathematical 

analysts is pre~ented in the Appendix. 
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2.0 METHOD 

2.1 VORTEX LATTICE METHOD 

The vortex lattice method (Ref. 1) models the boundary of  a flow regime with N 

singularities, either vortices or sources. Each singularity induces flow with velocities 

proportional to its strength. The resultant flow is the superposition of  the flows 

corresponding to all the singularities and an optional free stream. The strengths of the N 

singularities are determined by imposing boundary conditions at N points called control 

points. This produces a linear system of  N algebraic equations 

n 

A X = R (1) 

to be solved for the unknown strengths, X. 

The equations for the coefficient matrix, ~ ,  and the right-hand side, "R, are not 

pertinent to this analysis, but the fact that the coefficient matrix is determined only by 

the geometry of  the boundary is crucial to the development.  This fact will be used in 

Section 2.3 to derive symmetry conditions which are present in A. if symmetry exists. 

Assume that the boundary has a geometrically symmetric portion made up of M 

singularities and an asymmetric portion made up of  p singularities, so 

N = M + p  (2) 

then the system of equations, Eq. (1), can be partitioned to take the form 

(3) 

where A is M x M, B is M x p, C i s p  x M, D i s p x  p, X i s  M x 1, Y i s p x  1, R i s M x  

1, and S is p x I. Under such a partition, the matrix A can be constructed so that it 
satisfies the symmetry conditions. 

Equation (3) can be written 

AX + BY = R (4) 

and 

CX + DY = S (5) 
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The purpose of the method being presented.is to use the symmetry conditions present in 

A to effect a lhst solution of Eq. (4) for X in terms of  Y, obtaining 

X = r -- bY (6) 

Equation (6) can then be substituted into Eq. (5) to obtain 

(D - Cb) Y = (S - Cr) (7) 

and Gaussian elimination can be used on Eq. (7) to solve for Y. The Y can be substituted 

into Eq. (6) for the complete solution. 

Some discussion is needed on the existence of  the solutions. Equation (1) has a 

solution if A, is nonsingular. The step from Eq. (4) to Eq. (6) can be taken if A is 

nonsingular. If A and A are nonsmgular, then the matrix, ( D -  Cb), of  Eq. (7) is 

nonsmgular. Tffe matrix, A, will be nonsingular if the system has been modeled correctly. 

The ma[rix, A, will be nonsmgular if the symmetric portion has been modeled correctly. 

In general, if a coefficient matrix is singular or even ill-conditioned ~t is because the 

system has been improperly modeled. 

2.2 N U M B E R I N G  T H E  S I N G U L A R I T I E S  

The vortex model is composed of either vortices or sources comnlonly called 

singularities because the corresponding x.elocity functions are sing~dar at their centers (not 

to be confused with matrix singularity). The partitioning of the system depends on the 

ordering of these singularities. The following numbering scheme will be used. Let X be 

the number of  planes of  symmetry,  X = 1, 2, or 3. I fX  = l , t h e n  the symmetric porhon 

of the ~,ortex model can be dw~ded into two parts. One part will be called the basis and 

the other ~ts reflection. If X = 2, then the symmetric portion can be divided into four 

parts, one basis and three reflections. If ,X = 3, there are eight parts with one basis and 

seven reflections. Let A be the number of parts, then 

A = 2~ ( 8 )  

Let n be the nun~ber of  singulartties in tile basis: then the number of  singularities in the 

symmetric portion is 

M = An (.9) 

Let tile planes of symmetry be represented by P£. where Q = 1 to X. The singularities of 

the basis will be numbered trom I to n. The ret]ecuon of  the i'ih singularity, i ~< i ~< n. 
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with respect to Pl will be numbered n + I. For X > l.  the reflection of  the i ' th 

singularity,  1 ~< i ~< 2n, with respect to P2 will be numbered 2n + i. For )~ > 2, the 

reflection o f  the i ' th singt, larity, I ~ i ~< 4n with respect to P3 will be numbered 4n + 1. 

As already implied by the form of  Eq. (3), the nonsymmet r ic  port ion will be numbered 
from M + 1 to N. 

With this numbering system, the matiices, A. X, B. and R can be part i t ioned with 
respect to the A parts 

A = ( (A, , ) )  X = g X , ) )  

B = ( ( B , 0  R = ((P,O) (10)  

where i . . i  = 1 to A. A u is n x n, X, is n x l,  B, is n x p, and R, is n x l. With this 

parti t ion, Eq. (4) can be writ ten 

A 
Y A u Xj + B~ Y = R, (11) 

J=l 

with i = I to A. As a special case, if there is no nonsymmet r ic  port ion,  then Eq. ( l l )  
takes the form 

A 
5" A,j Xj = R, (12) 

J=l 

with i = ] t o  :x and there will be no Eq. (5). This report offers no new approach to the 

other  special case o f  no symmetr ic  port ion,  therefore,  it will not  be considered. 

Regarding notat ion,  it wdl at times be convenient  to add a superscript to a variable 

indicating the number  o f  planes of  symmet ry ,  X. This appendage wdl in no way alter the 
defini t ion o f  the variable. 

2.3 SYMMETRY CONDITIONS FOR A 

Since A is the coefficient  matrix for the symmetr ic  port ion and it depends only on 

the boundary  o f  the system, certain deduct ions  about  its internal form can be made. 

These symmet ry  condi t ions will now be derived. 

Each part o f  tile symmetr ic  port ion has a corresponding part with respect to each 

plane, the corresponding part being its reflection with respect to that plane. A table can 

be made of  these corresponding parts, whmh is determined by the numbering system of  
Sec. 2.2. 
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Table 1. Corresponding Reflected Parts 

Plane X = 1 X = 2 X = 3 

Part ~ 1 2 3 4 5 " 6 7 8 

Pi 2 I 4 3 6 5 8 7 

I}2 3 4 I 2 7 8 5 6 

P3 5 6 7 8 I 2 3 4 

The table for X = 1 is above and to the left of  the first bold line, and the table for 

X = 2 is above and to the left o f  the second bold hne. The third bold line marks the 

table for X = 3. 

A given matrix,  Atj, depends only on the geometry o f  parts i and j and their relative 

position. Given a plane of  symmet ry ,  P~, if i' and j' are the corresponding parts of  i and j 

with respect to P£, then parts l' and j '  (since they are reflections) have the same 

geometry, and relative positions as do parts i and j. Therefore,  A , ' /  = All. Such a relation 

can be writ ten for each submatr ix,  A u, of  A with respect to each plane o f  symmet ry ,  P~. 

Thus. there are X(A) 2 such relations. For example,  when X = 2, the relations for the first 

row of  A are 

P1 Relations 1}2 Relat ions  

A l l  = A22 A l l  = A33 

A12 = A21 At2  = A34 

A13 = A24 AI3  = A31 

AI4  = A23 AI4  = A32 

For k = 2, there are 24 more relations which have not  been writ ten out. For  a given X, if  

all the relations (not  all are independent} are writ ten out,  A can be writ ten in terms of  

the submatrices,  A~, of  the first row. Define 

A] 

Then tile form of  A for X= 1 "},and 3 is 

= Alj  (13) 

9 



A E D C - T R ~ 0 ~ 7  

A 1 
_[nl 

A2 

A2] 
Ai 

(14) 

A 2 = 

At A2 A3 

A2 Ai A4 

A3 A4 A1 

A4 A3 A 2 

A4 

A3 

A2 

A1 

(15) 

and 

A 3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

As 

A2 

A1 

A4 

A3 

A6 

A5 

A8 

A7 

A3 A4 

A4 A3 

A1 A2 

A2 A1 

A7 A8 

A8 A7 

A5 A6 

A6 A5 

A5 A6 

A6 A5 

A7 A8 

A8 A7 

A1 A2 

A2 A1 

A3 A4 

A4 A3 

A7 A8 

As A7 

A5 A6 

A6 As 

A3 A4 

A4 A3 

AI A 2 

A2 A1 

(16) 

A pattern can be noticed in Ak; namely, if A 2 and A 3 are partitioned as shown, then 

each partition, large or small, has the same form as the right-hand side of Eq. (14). This 
is the essence of a recursion procedure for generating A n in the Appendix. 

2.4 SYMMETRY CONDITIONS FOR R 

It is not necessary for the boundary conditions to be symmetric to use the solution 

of Section 2.5. In fact, symmetry of the boundary conditions is of no practical advantage 

10 
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excep t  in the special case, p = o. In that  case. i f  R satisfies the sy lmne t ry  condi t ions ,  

there is an addi t ional  tunesaving fac tor  o f  A m the solut ion.  

Boundary  condi t ions ,  with respect  to a plane,  can be e i ther  symlne t r i c  ( S - s y m m e t r y )  

or  a n t i s y m m e t r i c  ( A - s y m m e t r y ) .  As an i l lustrat ton,  for X = I it" a plane is s y m m e t r i c ,  then 

and if it is an t i sy lnmet r ic ,  then 

R 2 = R I 

R2 = - R I  

Since each plane can be e i ther  s y m m e t r i c  or  an t i~ymmet r ic ,  there  ar'e A possible 

combina t ions .  The  possLbillties are shown in Table  2. 

Table 2. Types of Symmetry 

Ty 5 6 

Plane X = 1 X = 2 

~ e 2  1 _,~ 3 4 

i 

Pt S A S A 

P2 S S A A 

P3 S S S S 

S A 

S S 

A A 

~ = 3  

7 8 

S A 

A A 

A A 

The com.en t ion  for using Table  2 for ,k = I. 2, or  3 LS above and to the left o f  the 

indicated bold line, and is the same as exp la ined  for  Table  1. Table 2 can bc used to 

cons t ruc t  a ref lect ion matr ix  

i. j = 1 to A. Tile e lements  o f  r? are plus or  minus  ones. The first row consists  o f  plus 

ones. The  second row of  7/ is de t e rmined  f rom the first row and the PI row of  Table  2. 

An S m Table  2 means  copy  f lora the first row, and an A l-ncans cop~,, with a change o f  

sign. This process ~s analogous  to the ref lect ion o f  the basis with respect  to Pt-  For  ,", > 

1, the third and four th  rows of  rt arc de te rmined  f rom the first two rows and the P2 row 

o f  Table  2. An S m Table  2 means  copy  f rom the first two rows and an A means  copy  

11 
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with a change of  sign. This is analogous to the reflection of  the first two parts with 

respect to P2 to obtain parts three and four. For 3, > 2, rows five through eight are 

obtained from the first four rows and the P3 row of  Table 2 in like manner; this is 

analogous to the reflection of the first four parts to obtain parts five through eight. By 

these rules, the following is obtained: 

I' '1 ~1 = (18)  

1 -1 

and 

1./2 = 

1 1 1 1 

1 - !  1 -1 

1 1 - !  -1 

1 - !  -1 1 

(19) 

/-/3 = 

1 1 1 I ! 1 1 

-1 1 -1 I -1 1 -1 

I -1 -1 1 I - !  -1 

-I  -1 1 1 -I  -1 1 

I 1 1 -1 -I  -I -1 

-1 l -1 -1 i -I 1 

1 -I -1 -1 -1 I I 

-1 -I  I -1 1 1 -1 

(20) 

Some useful properties of  r~ are noted. It is symmetric 

7)* = ~/ (21) 

12 
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where the asterisk indicates the transpose. Its inverse is given by 

1 
7"1 - A ~ (22) 

This is proved ill Theorem 1 of  the Appendix. The reflection matrix is an example of  a 

Hadamard matrix, (Refs. 2, 3. and 4). A Hadamard matrix is a square matrix of  plus and 

mintts ones such that 

HH* = m I 

where m is the order of  the matrix. 

Having available the reflection matrix, the symmetry conditions for R are simply 

stated. If the boundary conditions have symmetry of  the j ' th type. then 

f o r i =  1 to A. 

2.5 S O L U T I O N  

R, = rhj RI 
(23) 

As stated in Section 2.1. tile objective of  this report is a quick solution of Eq. (4). 

Sections 2.2. 2.3. and 2.4 were in preparation for this solution. To this end, Eq. (11 ) i s  

multiplied by r~ki and sumnled with respect to i to obtain 

A '~ ,\ A 

£ 2; r&~ A U X + E r~k, Bi Y = Y ~ki  R1 ( 2 4 )  
1=1 j = l  i = l  i = l  

for k = 1 to A. Define 

A 
a.kj = E r~k, A,j (25) 

1=1 

I A 
Ok - .x 2; rTkj Xj ( 2 6 )  

d=l  

1 A 
18k - ,x ,=Ejr~k, B, (27)  

1 '\ ( 2 8 )  
Pk - .~. i ~  t r / k ,  R, 

13 
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and the corresponding matrices 

with k, j = 1 to A. 

a , =  ( (ak j ) )  

# = 

Fundamental to the solution is 

0 = ( (ok) )  

p = ( (pk) )  
(29) 

akj = 'Okj ak 1 (30)  

k, j = 1 to A. This can be verified by obtaining the product r/A. Except for the sign, the 

elements of  a given row are the same, and the signs of  corresponding elements of  7/and a 

are the same. The formal proof  of  Eq. (30) is given in Theorem 3 of  the Appendix. Using 
Eqs. (25) through (30), Eq. (24) becomes 

O~kl Ok + #k Y = /Ok (31) 

for k = 1 to A. Thus, instead of  solving Eq. (4) which has M rows, there are A systems 

of  the form of  Eq. (31), having n rows each. This can result in a considerable savings, as 

will be seen in Section 3.0. Equation (31) can be solved for Ok if akl  is nonsingular. In 

Theorem 4 of  the Appendix, a k l ,  k = 1 to A are shown to be nonsingular if A is 

nonsingular. Thus, 0k can be written in terms of  Y 

Ok = r--k -- bk V (32) 

for k = 1 to A. Numerically, it is much more efficient to form the matrix 

[ak 1 Pk i ~k] (33) 

and solve by Gaussian elimination than to invert ak l .  

Having 0 in terms of  Y, X can be obtained in terms of Y from Eqs. (26) and (22): 

A 
Xi = ~ r/ik Ok (34) 

k=l 

i = 1 to A. From Eqs. (10), (34), and (32), the r and b of  Eq. (6) can be assembled as 

(35) 

14 
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and 

b = 2; 
k I 

This completes tile solution prolniscd in Section 2.1. 

(36) 

There remains the special case, p = o. Applying the same procedure to Eq. (12) 

produces 

°k w Ok = ,o k ( 3 7 )  

~n~tead of  Eq (31) for k = I t o A  There ~s an added benefit l t 'R satisfies the symmetry 

conditmns. Assume the boundary conditions have symmetry of  the j ' th type,  substituting Eq. 

(23.) into (28"1, and tLSlllg Eq. (2"2-11 gwcs 

pk = ~ikj RI ( 3 8 )  

k = 1 to A. where 6~j is the Kronccker Delta. So Pk = O, implying Ok = o for all k 

except k = j. Thus, Eq. (37) needs to be solved only for k = j. As a side note, the 

boundary conditions do not have to be symmetric with respect to all the planes of  

symmetry to be beneficial. Each plane for which the boundary conditions ha~,e either 

S-symmetry or A-symmetry eliminates half of  the systems, Eq. (37). 

3.0 SUMMARY 

Tile algorithln can be described as follows. Gwen A, R, X, n, and p, the following 

steps arc I~erformed. 

1. Compute a, Eq. (25). 

Compute ~. Eq. (27L 

3. Colnpute p, Eq. (28). 

4. For k = 1 to A, apply Gaussian elimination to the matrix of  Eq. (33). 

5. Compute r, Eq. (35). 

6. Colnpute b, Eq. (36). 

7. Compute the s~,stem of Eq. (7). 

15 



A EDC-TR-80 -67  

8. Solve the system for Y using Gaussian elimination. 

9. Compute X, Eq. (6). 

The time required to perform this task depends on the number of operations, i.e., 
additions, subtractions, multiplications, and divisions. Different operations require 
different times, and even the ratios of times vary with computer. Considering parallel 
processors, how well a method vectorizes must be taken into account. Such a detailed 

accounting seemed to be a diversion, so the rudimentary convention of Ref. 5, counting 
only multiplications and divisions, will be followed. 

The first savings from symmetry come in the computation of the coefficient matrix. 
Equations (14) through (16) show that only A of the (A) 2 submatrices of A need to be 

calculated. Similarly, if R satisfies the symmetry conditions, Eq. (23), only one of the A 
submatrices of R need be calculated. 

In the solution, Step 1 requires only additions and subtractions, with r/ just 
supplying the signs. The same can be said for Steps 2 and 3, except Step 2 has Mp 

divisions by A, and Step 3 has M dwlsions by A. According to Ref. 5, the number of 
operations to perform Step 4 is 

A [ l n 3  + (p + 1) n2 - 5  - n i  ] 

Steps 5 and 6 require only additions and subtractions. In Step 7, the computation of Cb 

requires Mp 2 multiplications, and the computation of Cr requires Mp multiplications. 
Step 8 requires 

1 p3 + p2 1 
3 3 P 

operations. Step 9 requires Mp multiplications. The total number of operations, Nt,  is 

1 2 An N1 - 3 An3 + An2 + 7 

+ An2p + Anp 2 + 3Anp 

1 p3 + p2 1 
+ - 3 -  - - T  o 

(39) 

If Eq. (I)  were solved directly, the number of  operations, N2. would be 

! 1 
N2 = --T (M + p)3 + (M + p)2 + T (M + p) 

o r  

16 



A E DC-T R -80-67 

N2 - ] A 3 n 3  + A 2 n 2  1 A n  
3 3 

+ A2n2p + Anp 2 + 2Anp 

l I 
+ ._~_ p2 + 132 _ - T  P 

The number of operations saved is 

1 
N3 - N l = ~ -  ( A  - 1) A ( A  + 1) n 3 

+ A n  [(A- 1) n - f ]  (p + l) 

(40) 

( 4 1 )  

Equation (41) is a measure of  the value of  exploiting partial symmetry.  

Often, exploiting symmetry is not jusl a timesaver. Many times it is a matter of  

whether or not a Job can be done; the factor of 8 x "pushes it beyond the reahn of  

practicality. 

. 

"3' 

o 

. 

o 
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APPENDIX A 

MATH EMATICAL ANALYSIS  

Defini tmn 1: Super  Symmet r i c  Block Matrix (SSBM) 

Given n~> l , X > ~ o a n d  

S = {'1'1'I~ is an n x n matr ix} 

A sequence o f  sets Sj, j = o to X can be def ined using the fol lowing recursive 

procedure  

• So = S 
/ 

• Sj = f z l ~  = 
.~ e Sj_E. 

j = 1 to X. If  AJeSj, then AJ is called a SUl)er sylnmetr lc  block matr ix  o f  order  

j. It can be noted  that  

• If ~k and Ak are SSBM's o f  o rder  k, then 

Ak+l = (A-I)  
t 

ts an SSBM of  o rder  k + 1, and •k + ~k and ~k _ ~k are SSBM'S o f  order  k. 

A 1 . A 2, and A 3 o f  Eqs. (14") through I,16) are SSBM'S o f  orders  1, 2. and 3. 

respectweb, .  

Defini t ion 2. The Reflect ion Matrix 

Given ,k >~ o. A sequence o f  matrices r/J, j = o to ,-k, can be defined using the 

following recurswe p r o c e d u r e  

r/° = 1 

771 ---- 

I j- t r/J- 

-1 _~/J- I.~ 

(A-2) 
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j = 1 to X. The matrix 77 x is called the reflection matrix o f  order  X. It can be 

verified that  rfl ,  772, and r/3 o f  Eqs. (18) through (20)  are the reflection 

matrices o f  order  !, 2, and 3, respectively.  It is easily proved that the first row 

and column o f  a reflection matrix consist  o f  plus ones. 

Lemma:  Let 

E = (A-3) 

where  F and G are arbJtrary n x n matrices. The block matrix, E, is nonsingular if and 
only if F and G are nonsingular;  if nonsingular,  then 

2 -1 -G- 

(A-4) 

Proof:  Note  that  

where I is an n x n ident i ty  matr ix and 0 is an n x n zero matrix. 

Since 

is nonsingular,  E is nonsingular if  and Ol'dy if F and G are nonsingular. If  F and G are 

nonsingular,  Eq. (A-4) can be easily verified. 

Theorem 1' Tile reflect ion matrix o f  order  X is nonsingular and its inverse is given by 

1 =X'7  (A-5) 

20 
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where A = 2 x. 

P roof '  The  t h e o r e m  is obvious ly  true for  ]k, = o since A = r/ = 1 Assume the t h e o r e m  is 

true for  X = k for some  k ~> o. App ly ing  the L e m m a  to Eq. (A-2) and subs t i tu t ing  Eq. 

(A-5)  into the result  p roduccs  

(r/k+ 1 )-1 If _ k ~k 9-k r/k 1 I 

2 - k  qk _2-k ,qk 

Factor ing  out  the 2 -k. tt is seen tha t  the t h e o r e m  is true for  ,X = k + 1 and thus for  all X. 

There  is occasion in the fol lowing analysis to take the p roduc t  o f  r/ and a b lock 

matr ix .  The e lements  o f  one tire scalars and the e l emen t s  o f  the o the r  are n x n matr ices.  

Since the p roduc t  o f  a scalar and a matr ix  is def ined,  the p roduc t  of  r/ with a b lock  

mat r ix  can be def ined in the normal  manner .  

T h e o r e m  2: A block mat r ix ,  A, with n x n blocks is an SSBM o f  o rder  k if and only if 

A = (r/~,)-I D r/X (A-6) 

or  by  T h e o r e m  1 

1 
- -  r/~ D r/~- _ ( A - 7 )  A =  A 

where  D is a b lock  diagonal  mat r ix ,  that  is 

I D1 D~ 0 

D = 
0 D 

(A-8) 

~,here D I, j = ] to A. are n x n. 

P roof  Tile t h e o r e m  is obviously  true for  X = o, since r/° = ! so A = D. Assume tile 

t l leorem is true for X = k for some  k ~> o. Given an a rb i t ra ry  D o f  the form o f  Eq. (A-8) 

w,th ,\ = 2 k leads to the def in i t ion 

i 

D = Drag I.D 1 . . . .  ; D;,,A) (A-9) 

alld 
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I) = D i a g  ( D v : A + t ,  • - • , D A )  
(A-10) 

and Eq. (A-8) can be writ ten 

D = (A-I 1) 

Equat ion  (A-7) then becomes 

l rtk ~k r/k ,ok 

A -  2k+l k -1,/ k --..T/k (A-12) 

which can be w n t t e n  

A = (A-13)  

where 

and 

-Lnk (D+6) nk At= 2 k 2 (A-14) 

1 ..r/k ( [ ) "  EI/,0k A' = ~ ~ ( A - 1 5 )  

The  quant i t ies  in parentheses  are obviously  block dmgonal matnces ;  thus, since the 

t l leorem is assumed true for k = k, the matrices A and A are SSBM's o f  o rder  k. Thus,  

by the form of  Eq. (A-13),  the m a t n x  A is an SSBM o f  o rder  X = k + I. 

Assume A is an SSBM o f  order  ,-k = k + I ; then A can be wri t ten 

A:E  ;,1 
where ,~ and ,~. are SSBM's o f  order  k = k. Since the theorem is asst, med to be true for ~. 

= k,  

.--) .,-) 
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1 

X = 2-~ 77k 5 ~k 

and 

= ~ ,7 k b nk 
2k 

where D and 1:) are block diagonal matrices. By matr ix  algebra, it can be verified that  

1 
A - f / k + l  D 'rl k + l  

2 k + l  

where 

D = o°D 1 
Thus,  assuming the t ru th  of  the theorem for X = k, It is t rue for X = k + 1, and thus for 

all X. 

Corollary if A is at nonstngular  SSBM, then so is its inverse. 

Proof:  Since A lS all SSBM 

A = r / - t  D r /  

where D is a block diagonal matrix.  Its inverse is 

A -i = r/-i D -I r/ 

Since D -i is also a block diagonal matr ix,  A -i is an SSBM. 

The o r e m 3 Given 

= ( % ~ ) )  = ~A (A-16) 

with j, k = 1 to A where A is an SSBM. Then  

Ctjk = r/jk ajl (A-17) 

ProoF' Since A is an SSBM, subst i tu t ing Eq. (A-6) into (A-16) produces  

a = ~ ( ~ - I  D r~) = Dr/ 

23 
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where D = Diag (DI , . . . . ,D A)  with Dj, j = 1 to A,  be ing  n x n matrices. Therefore, 

a,jk = (Dr/)jk = Dj rbk 

when k = 1 

since 

produces the desired result, Eq. (A-17). 

Theorem 4: Given 

(A-18) 

(131 = Dj r~j I = Dj ( A - 1 9 )  

the first column of  rt consists of  plus ones. Subsituting Eq. (A-19) into (A-18) 

a = r/A (A-20) 

where A is a nonsingular SSBM, the block matrix a is obviously nonsingular, so let 

1 
a - I  = ~__ ( (a jk))  

Then, 

(A-21 ) 

ajk = ai~] (A-22) 

ajk = r/jk ai~ll (A-23) 

or by Theorem 3 

DN)=Drl 

1 
m-I = - -  I A r i d  - 

= (r/ D "l)Jk 

Proof' Since A is all SSBM, 

(A-24) 

and 
a = rl(rF 1 

a - I  = ,O-1 

Therefore, by the form of Eq. (A-21) 

o r  

O-jk = 7"/jk I ~  I 

The desired result. Eq. (A-23) is created when Eq. (A-19) is substituted into Eq. (A-24). 
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A 

A U 

A 

A 

B 

B, 

b 

5k 

C 

D 

I 

M 

N 

Nl 

N2 

n 

P~ 

P 

r 

R1 

R 

S 

X 

NOMENCLATURE 

Coefficient matrix for the symmetric portion of the model, Eq. (3) 

Submatnx of A, Eq. (10) 

Alj, Eq. (13) 

Coefficient matrix for the whole system, Eq. (1) 

Submatnx of A,, Eq. (3) 

Submatrix of B, Eq. (10) 

Eqs. (6) and (36) 

Eq. (32) 

Submatrix of A, Eq. (3) 

Coefficient matrix for the nonsymmetric portion of the model, Eq. (3). In the 
Appendix, D is a block diagonal matrix 

Idefitity matrix 

Number of singularities in the symmetric portion of the model, Eq. (9) 

Ntmaber of singularities in the whole model, Eq. (2) 

Operation'count using symmetry, Eq. (39) 

Operation count neglecting symmetry, Eq. (40) 

Number of singularities in the basis of the symmetric portion of the model 

~'th plane of symmetry 

Number of singularities in the nonsymmetric portion of the model 

Right-hand side for the whole system, Eq. (1) 

Eqs. (6) and (35) 

Right-hand side for Part i, Eq. (10) 

Eq. (32) 

Right-hand side for the symmetric portion of the model, Eq. (3) 

Right-hand side for the nonsymmetrlc portion of the model, Eq. (3) 

Strengths of the symmetric portion of the model, Eq. (3) 
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X1 

X 

Y 

£t 

O, kj 

t3 

~k 

5lj 

r/ 

r/tj 

0 

0k 

A 

X 

/9 

Pk 

Strengths of Part i, Eq. (I0) 

Strengths of the whole system, E'q. (1) 

Strengths of the nonsylnnlctrtc portion of the model, Eq. (3) 

Eq. (29) 

I?q. (25) 

Eq. (29) 

Eq. (27) 

Kronecker Delta, Eq. (38) 

Reflection matrix, Section 2.4 

Elements of r/, Eq. (17) 

Eq. (29) 

Eq. (26) 

Number of parts, Eq. (8) 

Number of planes of symmetry 

Eq. (29) 

Eq. (28) 

NOTATION 

( ( ) )  Denotes a matrix with the elements indicated 

SYMBOLS 

* Denotes the transpose 

-1 Denotes the inverse 

Any superscript on a variable other than " , "  "-1" or does not alter the meaning of the 
variable, but refers to the number of planes of symmetry, X. 
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